A wise man once said, "To every action,there is an equal and opposite reaction." So is with the matter. There is a flip side of the matter i.e. Antimatter.
Okay now, consider an equation x2=4 which might have two probable solutions : x = 2 or x = -2. So, according to the British physicist Paul Dirac's theory there could be electron with positive or with negative energy. But classical physics (and common sense) dictated that the energy of a particle must always be a positive number.
Dirac interpreted the equation to mean that for every particle there exists a corresponding antiparticle, exactly matching the particle but with opposite charge. For the electron there should be an "anti-electron", for example, identical in every way but with a positive electric charge. The insight opened the possibility of entire galaxies and universes made of antimatter.
But when matter and antimatter come into contact, they annihilate – disappearing in a flash of energy. The big bang should have created equal amounts of matter and antimatter. So why is there far more matter than antimatter in the universe?
Antimatter is the stuff of science fiction. In the book and film Angels and Demons, Professor Langdon tries to save Vatican City from an antimatter bomb. Star Trek’s starship Enterprise uses matter-antimatter annihilation propulsion for faster-than-light travel.
But antimatter is also the stuff of reality. Antimatter particles are almost identical to their matter counterparts except that they carry the opposite charge and spin. When antimatter meets matter, they immediately annihilate into energy.
While antimatter bombs and antimatter-powered spaceships are far-fetched, there are still many facts about antimatter that will tickle your brain cells.
Antimatter is closer to you than you think.
Small amounts of antimatter constantly rain down on the Earth in the form of cosmic rays, energetic particles from space. These antimatter particles reach our atmosphere at a rate ranging from less than one per square meter to more than 100 per square meter. Scientists have also seen evidence of antimatter production above thunderstorms.
But other antimatter sources are even closer to home. For example,bananas produce antimatter, releasing one positron—the antimatter equivalent of an electron—about every 75 minutes. This occurs because bananas contain a small amount of potassium-40, a naturally occurring isotope of potassium. As potassium-40 decays, it occasionally spits out a positron in the process.
Our bodies also contain potassium-40, which means positrons are being emitted from you, too. Antimatter annihilates immediately on contact with matter, so these antimatter particles are very short-lived.
Well Antimatter is nothing like pure energy or something.
But,
If antimatter and matter are exactly equal but opposite, then why is there so much more matter in the universe than antimatter?
Well... we don't know. It is a question that keeps physicists up at night.
And our quest for the knowledge continues.
Adios!

No comments:
Post a Comment